Super ECL Detection Reagent is designed to detect antibodies and associated antigens directly or indirectly labeled with horseradish peroxidase (HRP). The principle of Super ECL Detection Reagent is that, proteins or nucleic acids were transferred to the imprinted membrane after electrophoresis, and the target proteins on the membrane were bound by primary antibody and secondary antibody labeled with HRP, or the nucleic acids on the membrane were bound directly or indirectly by probes labeled with HRP. After washing the membrane, the ECL working solution prepared by the product was used to incubate the membrane at room temperature for several minutes. The imprinted membrane was wrapped with plastic wrap and fixed to the X-ray exposure Cassette. Then the X-ray film is pressed on the membrane in a darkroom and exposed for several seconds to several hours. After development and fixing, protein or nucleic acid bands can be clearly displayed on the X-ray film. This kit has a unique luminescent substrate system, Super ECL Detection Reagent is the most sensitive commercial fluorescent ECL detection reagent at present.
Features
Applications
Recommended Antibody Concentrations | primary antibody (liquid storage concentration 1mg/mL) : 1:1000-1:10000 secondary antibody (liquid storage concentration 1mg/mL) : 1:2000-1:10000 |
Signal Duration | < 12 h |
Substrate Properties | Chemical Substrate |
Substrate Type | HRP (Horseradish Peroxidase) Substrate |
Sensitivity | low pick-grade antigens |
Components No. | Name | 36208ES60 (100 mL) | 36208ES76 (500 mL) |
36208-A | Super ECL Detection Reagent-Reagent A | 50 mL | 250 mL |
36208-B | Super ECL Detection Reagent-Reagent B | 50 mL | 250 mL |
The product is shipped with ice pack and can be stored at 2℃ ~ 8℃ for one year away from light.
Figure 1 Comparison of detection effect between Yeasen Super substrate and Pico substrate of the same level of other brands
Yeasen ECL reagent has better use effect than other brands of the same level of products
[1] Wang Z, Lu Z, Lin S, et al. Leucine-tRNA-synthase-2-expressing B cells contribute to colorectal cancer immunoevasion. Immunity. 2022;55(6):1067-1081.e8. doi:10.1016/j.immuni.2022.04.017(IF:43.474)
[2] Yao J, Wu D, Zhang C, et al. Macrophage IRX3 promotes diet-induced obesity and metabolic inflammation. Nat Immunol. 2021;22(10):1268-1279. doi:10.1038/s41590-021-01023-y(IF:25.606)
[3] Zeng KW, Wang JK, Wang LC, et al. Small molecule induces mitochondrial fusion for neuroprotection via targeting CK2 without affecting its conventional kinase activity [published correction appears in Signal Transduct Target Ther. 2021 Mar 12;6(1):120]. Signal Transduct Target Ther. 2021;6(1):71. Published 2021 Feb 19. doi:10.1038/s41392-020-00447-6(IF:18.187)
[4] Xiang L, Niu K, Peng Y, et al. DNA G-quadruplex structure participates in regulation of lipid metabolism through acyl-CoA binding protein [published online ahead of print, 2022 Jun 24]. Nucleic Acids Res. 2022;50(12):6953-6967. doi:10.1093/nar/gkac527(IF:16.971)
[5] Wang W, Li K, Yang Z, Hou Q, Zhao WW, Sun Q. RNase H1C collaborates with ssDNA binding proteins WHY1/3 and recombinase RecA1 to fulfill the DNA damage repair in Arabidopsis chloroplasts. Nucleic Acids Res. 2021;49(12):6771-6787. doi:10.1093/nar/gkab479(IF:16.971)
[6] Li T, Chen X, Qian Y, et al. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun. 2021;12(1):615. Published 2021 Jan 27. doi:10.1038/s41467-021-20913-1(IF:14.919)
[7] Yuan H, Zhao L, Yuan Y, et al. HBx represses WDR77 to enhance HBV replication by DDB1-mediated WDR77 degradation in the liver. Theranostics. 2021;11(17):8362-8378. Published 2021 Jul 25. doi:10.7150/thno.57531(IF:11.556)
[8] Ye G, Wen Z, Wen F, et al. Mussel-inspired conductive Ti<sub>2</sub>C-cryogel promotes functional maturation of cardiomyocytes and enhances repair of myocardial infarction. Theranostics. 2020;10(5):2047-2066. Published 2020 Jan 12. doi:10.7150/thno.38876(IF:11.556)
[9] He Y, Ye G, Song C, et al. Mussel-inspired conductive nanofibrous membranes repair myocardial infarction by enhancing cardiac function and revascularization. Theranostics. 2018;8(18):5159-5177. Published 2018 Oct 6. doi:10.7150/thno.27760(IF:11.556)
[10] Yang F, Xie HY, Yang LF, et al. Stabilization of MORC2 by estrogen and antiestrogens through GPER1- PRKACA-CMA pathway contributes to estrogen-induced proliferation and endocrine resistance of breast cancer cells. Autophagy. 2020;16(6):1061-1076. doi:10.1080/15548627.2019.1659609(IF:11.059)
[11] Li B, Huang N, Wei S, et al. lncRNA TUG1 as a ceRNA promotes PM exposure-induced airway hyper-reactivity. J Hazard Mater. 2021;416:125878. doi:10.1016/j.jhazmat.2021.125878(IF:10.588)
[12] Wang Z, Liu C, Zhu D, et al. Untangling the co-effects of oriented nanotopography and sustained anticoagulation in a biomimetic intima on neovessel remodeling. Biomaterials. 2020;231:119654. doi:10.1016/j.biomaterials.2019.119654(IF:10.273)
[13] Zou Y, Wang A, Huang L, et al. Illuminating NAD<sup>+</sup> Metabolism in Live Cells and In Vivo Using a Genetically Encoded Fluorescent Sensor. Dev Cell. 2020;53(2):240-252.e7. doi:10.1016/j.devcel.2020.02.017(IF:10.092)
[14] Lin S, Wen Z, Li S, et al. LncRNA Neat1 promotes the macrophage inflammatory response and acts as a therapeutic target in titanium particle-induced osteolysis. Acta Biomater. 2022;142:345-360. doi:10.1016/j.actbio.2022.02.007(IF:8.947)
[15] Zhou Z, Zhang Q, Zhang M, et al. ATP-activated decrosslinking and charge-reversal vectors for siRNA delivery and cancer therapy. Theranostics. 2018;8(17):4604-4619. Published 2018 Sep 9. doi:10.7150/thno.26889(IF:8.537)
[16] Zhang YL, Deng L, Liao L, et al. Chromatin complexes subunit BAP18 promotes triple-negative breast cancer progression through transcriptional activation of oncogene S100A9. Cell Death Dis. 2022;13(4):408. Published 2022 Apr 28. doi:10.1038/s41419-022-04785-x(IF:8.469)
[17] Li F, Huang T, Tang Y, et al. Utidelone inhibits growth of colorectal cancer cells through ROS/JNK signaling pathway. Cell Death Dis. 2021;12(4):338. Published 2021 Apr 1. doi:10.1038/s41419-021-03619-6(IF:8.469)
[18] Dou R, Qian J, Wu W, et al. Suppression of steroid 5α-reductase type I promotes cellular apoptosis and autophagy via PI3K/Akt/mTOR pathway in multiple myeloma. Cell Death Dis. 2021;12(2):206. Published 2021 Feb 24. doi:10.1038/s41419-021-03510-4(IF:8.469)
[19] Zhang J, Wang Y, Zheng Z, et al. Intracellular ion and protein nanoparticle-induced osmotic pressure modify astrocyte swelling and brain edema in response to glutamate stimuli. Redox Biol. 2019;21:101112. doi:10.1016/j.redox.2019.101112(IF:7.793)
[20] Chen R, Sun Y, Cui X, et al. Autophagy promotes aortic adventitial fibrosis via the IL-6/Jak1 signaling pathway in Takayasu's arteritis. J Autoimmun. 2019;99:39-47. doi:10.1016/j.jaut.2019.01.010(IF:7.543)
[21] Cen Y, Zou X, Zhong Q, et al. The TIAR-mediated Nrf2 response to oxidative stress is mediated through the Nrf2 noncoding 3'untranslated region in Spodoptera litura. Free Radic Biol Med. 2022;184:17-29. doi:10.1016/j.freeradbiomed.2022.03.016(IF:7.376)
[22] Hu X, Wang X, Xu Y, et al. Electric Conductivity on Aligned Nanofibers Facilitates the Transdifferentiation of Mesenchymal Stem Cells into Schwann Cells and Regeneration of Injured Peripheral Nerve. Adv Healthc Mater. 2020;9(11):e1901570. doi:10.1002/adhm.201901570(IF:7.367)
[23] Chenxu G, Minxuan X, Yuting Q, et al. iRhom2 loss alleviates renal injury in long-term PM2.5-exposed mice by suppression of inflammation and oxidative stress. Redox Biol. 2018;19:147-157. doi:10.1016/j.redox.2018.08.009(IF:7.126)
[24] Yuan J, Jiang X, Lan H, et al. Multi-Omics Analysis of the Therapeutic Value of MAL2 Based on Data Mining in Human Cancers. Front Cell Dev Biol. 2022;9:736649. Published 2022 Jan 17. doi:10.3389/fcell.2021.736649(IF:6.684)
[25] Xie X, Li D, Cui Y, Xie T, Cai J, Yao Y. Decorin Protects Retinal Pigment Epithelium Cells from Oxidative Stress and Apoptosis via AMPK-mTOR-Regulated Autophagy. Oxid Med Cell Longev. 2022;2022:3955748. Published 2022 Mar 29. doi:10.1155/2022/3955748(IF:6.543)
[26] Zhao Z, Li T, Dong X, et al. Untargeted Metabolomic Profiling of Cuprizone-Induced Demyelination in Mouse Corpus Callosum by UPLC-Orbitrap/MS Reveals Potential Metabolic Biomarkers of CNS Demyelination Disorders. Oxid Med Cell Longev. 2021;2021:7093844. Published 2021 Sep 14. doi:10.1155/2021/7093844(IF:6.543)
[27] Sun J, Li JY, Zhang LQ, et al. Nrf2 Activation Attenuates Chronic Constriction Injury-Induced Neuropathic Pain via Induction of PGC-1α-Mediated Mitochondrial Biogenesis in the Spinal Cord. Oxid Med Cell Longev. 2021;2021:9577874. Published 2021 Oct 21. doi:10.1155/2021/9577874(IF:6.543)
[28] Sun J, Li JY, Zhang LQ, et al. Nrf2 Activation Attenuates Chronic Constriction Injury-Induced Neuropathic Pain via Induction of PGC-1α-Mediated Mitochondrial Biogenesis in the Spinal Cord. Oxid Med Cell Longev. 2021;2021:9577874. Published 2021 Oct 21. doi:10.1155/2021/9577874(IF:6.543)
[29] Chen N, Ge MM, Li DY, et al. β2-adrenoreceptor agonist ameliorates mechanical allodynia in paclitaxel-induced neuropathic pain via induction of mitochondrial biogenesis. Biomed Pharmacother. 2021;144:112331. doi:10.1016/j.biopha.2021.112331(IF:6.530)
[30] Zhang C, Zhao C, Chen X, et al. Induction of ASC pyroptosis requires gasdermin D or caspase-1/11-dependent mediators and IFNβ from pyroptotic macrophages. Cell Death Dis. 2020;11(6):470. Published 2020 Jun 18. doi:10.1038/s41419-020-2664-0(IF:6.304)
[31] Wang J, Jin S, Fu W, Liang Y, Yang Y, Xu X. Pubertal exposure to bisphenol-A affects social recognition and arginine vasopressin in the brain of male mice. Ecotoxicol Environ Saf. 2021;226:112843. doi:10.1016/j.ecoenv.2021.112843(IF:6.291)
[32] Chen X, He H, Xiao Y, et al. CXCL10 Produced by HPV-Positive Cervical Cancer Cells Stimulates Exosomal PDL1 Expression by Fibroblasts via CXCR3 and JAK-STAT Pathways. Front Oncol. 2021;11:629350. Published 2021 Aug 6. doi:10.3389/fonc.2021.629350(IF:6.244)
[33] Zheng L, Liu Q, Li R, et al. Targeting MDK Abrogates IFN-γ-Elicited Metastasis inCancers of Various Origins. Front Oncol. 2022;12:885656. Published 2022 Jun 7. doi:10.3389/fonc.2022.885656(IF:6.244)
[34] Ding W, Fan Y, Jia W, et al. FER Regulated by miR-206 Promotes Hepatocellular Carcinoma Progression via NF-κB Signaling. Front Oncol. 2021;11:683878. Published 2021 Jul 5. doi:10.3389/fonc.2021.683878(IF:6.244)
[35] Qiu J , Peng P , Xin M , et al. ZBTB20-mediated titanium particle-induced peri-implant osteolysis by promoting macrophage inflammatory responses. Biomater Sci. 2020;8(11):3147-3163. doi:10.1039/d0bm00147c(IF:6.183)
[36] Yuan HF, Zhao M, Zhao LN, et al. PRMT5 confers lipid metabolism reprogramming, tumour growth and metastasis depending on the SIRT7-mediated desuccinylation of PRMT5 K387 in tumours [published online ahead of print, 2022 Jan 19]. Acta Pharmacol Sin. 2022;10.1038/s41401-021-00841-y. doi:10.1038/s41401-021-00841-y(IF:6.150)
[37] Zhao LN, Yuan HF, Wang YF, et al. IFN-α inhibits HBV transcription and replication by promoting HDAC3-mediated de-2-hydroxyisobutyrylation of histone H4K8 on HBV cccDNA minichromosome in liver. Acta Pharmacol Sin. 2022;43(6):1484-1494. doi:10.1038/s41401-021-00765-7(IF:6.150)
[38] Li D, Ding J, Liu TL, et al. SARS-CoV-2 receptor binding domain radio-probe: a non-invasive approach for angiotensin-converting enzyme 2 mapping in mice [published correction appears in Acta Pharmacol Sin. 2022 Feb 3;:]. Acta Pharmacol Sin. 2022;43(7):1749-1757. doi:10.1038/s41401-021-00809-y(IF:6.150)
[39] Zang CX, Wang L, Yang HY, et al. HACE1 negatively regulates neuroinflammation through ubiquitylating and degrading Rac1 in Parkinson's disease models. Acta Pharmacol Sin. 2022;43(2):285-294. doi:10.1038/s41401-021-00778-2(IF:6.150)
[40] Cai J, Chen Z, Wang J, et al. circHECTD1 facilitates glutaminolysis to promote gastric cancer progression by targeting miR-1256 and activating β-catenin/c-Myc signaling. Cell Death Dis. 2019;10(8):576. Published 2019 Aug 2. doi:10.1038/s41419-019-1814-8(IF:5.959)
[41] Usman M, Li Y, Ke Y, et al. Trappc9 Deficiency Impairs the Plasticity of Stem Cells. Int J Mol Sci. 2022;23(9):4900. Published 2022 Apr 28. doi:10.3390/ijms23094900(IF:5.924)
[42] Li J, Yuan J, Wang H, Zhang H, Zhang H. Arabidopsis COPPER TRANSPORTER 1 undergoes degradation in a proteasome-dependent manner [published correction appears in J Exp Bot. 2021 Oct 26;72(20):7337]. J Exp Bot. 2020;71(19):6174-6186. doi:10.1093/jxb/eraa352(IF:5.908)
[43] Zhang X, Huo Z, Luan H, et al. Scutellarin ameliorates hepatic lipid accumulation by enhancing autophagy and suppressing IRE1α/XBP1 pathway. Phytother Res. 2022;36(1):433-447. doi:10.1002/ptr.7344(IF:5.882)
[44] Pan Q, Li Z, Ju X, et al. Escherichia coli segments its controls on carbon-dependent gene expression into global and specific regulations. Microb Biotechnol. 2021;14(3):1084-1106. doi:10.1111/1751-7915.13776(IF:5.813)
[45] Zhu C, Wang Z, Cai J, et al. VDR Signaling via the Enzyme NAT2 Inhibits Colorectal Cancer Progression. Front Pharmacol. 2021;12:727704. Published 2021 Nov 16. doi:10.3389/fphar.2021.727704(IF:5.811)
[46] Jiang J, Ju J, Luo L, et al. Salmon Calcitonin Exerts an Antidepressant Effect by Activating Amylin Receptors. Front Pharmacol. 2022;13:826055. Published 2022 Feb 14. doi:10.3389/fphar.2022.826055(IF:5.811)
[47] Ma M, Fan AY, Liu Z, et al. Baohuoside I Inhibits Osteoclastogenesis and Protects Against Ovariectomy-Induced Bone Loss. Front Pharmacol. 2022;13:874952. Published 2022 Apr 27. doi:10.3389/fphar.2022.874952(IF:5.811)
[48] Guo J, Zhu P, Ye Z, et al. YRDC Mediates the Resistance of Lenvatinib in Hepatocarcinoma Cells via Modulating the Translation of KRAS. Front Pharmacol. 2021;12:744578. Published 2021 Oct 1. doi:10.3389/fphar.2021.744578(IF:5.811)
[49] Zhou Z, Zhang M, Liu Y, et al. Reversible Covalent Cross-Linked Polycations with Enhanced Stability and ATP-Responsive Behavior for Improved siRNA Delivery. Biomacromolecules. 2018;19(9):3776-3787. doi:10.1021/acs.biomac.8b00922(IF:5.738)
[50] Wang C, Zhang J, Song S, et al. Imaging epileptic foci in mouse models via a low-density lipoprotein receptor-related protein-1 targeting strategy. EBioMedicine. 2021;63:103156. doi:10.1016/j.ebiom.2020.103156(IF:5.736)
Catalog No.:*
Name*
phone Number:*
Lot:*
Email*
Country:*
Company/Institute:*